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ABSTRACT
We propose a best predicted curve classification (BPCC) criterion for classifying the curve 
data. The data are viewed as realizations of  a mixture of  stochastic processes and each 
subprocess corresponds to a known class. Under the assumption that all the groups have 
dif ferent mean functions and eigenspaces, an observed curve is classif ied into the best 
predicted class by minimizing the distance between the observed and predicted curves via 
subspace projection among all classes based on the functional principal component analysis 
(FPCA) model. The BPCC approach accounts for both the means and the modes of  variation 
differentials among classes while other classical functional classification methods consider 
the differences in mean functions only. Practical performance of  the proposed method is 
demonstrated through simulation studies and a real data example of  matrix assisted laser 
desorption (MALDI) mass spectrometry (MS) data. The proposed method is also compared 
with other multivariate and functional classification approaches. Overall, the BPCC method 
outperforms the others when the mean functions and the eigenspaces among classes are 
signif icantly distinct. For classifying the MALDI MS data, we found that functional 
classification methods perform better than multivariate data approaches, and the dimension 
reduction via FPCA is advantageous to improving the accuracy of  classification. 

Keywords: Classification; Functional data analysis; Functional principal component analysis; 
Mass spectrometry; Proteomics

1. Introduction 

With the technological advances in high-throughput, extensive repeated 
measurements are increasingly collected in many scientific fields. For example, the 
daily precipitation sampled from dif ferent weather stations for many years, the 
time-course gene expression levels of  thousands of  genes simultaneously measured 
at sequential time points in a microarray experiment, and the proteomic spectrum 
densely collected at sequential mass-per-charge (m/z) ratios in a matrix-assisted laser 
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desorption and ionization time-of-flight (MALDI-TOF) experiment. Data of  this type 
can be viewed as realizations of  curves or longitudinally collected functional data. 
Recently, statistical methods for analyzing curve data based on the framework 
of  functional data analysis (FDA) have been developed actively. A comprehensive 
introduction of functional data analysis is provided by Ramsay and Silverman [15].

Supervised classif ication of  curve data is a major and interesting topic of  
functional data analysis. Numerous functional classif ication methods have been 
proposed for identifying functional data into correct classes according to pattern 
or functional features of  the curves. James and Hastie [7] proposed the functional 
linear discrimination analysis extended from classical multivariate data approach 
via smoothing techniques. Using the generalized linear model or functional logistic 
regression for functional data classif ication is another popular approach (James 
[8]; Müller and Stadtmüller [13]; Leng and Müller [9]; Aguilera et al. [1]). Ferraty 
and Vieu [5] proposed a nonparametric kernel method for discriminating functional 
data. Extension of  support vector machine (SVM) to functional data classification 
has been discussed (Rossi and Villa [16]; Park et al. [14]). Moreover, functional 
classif ication methods based on Baysian analysis are proposed with applications 
to gene expression data (Mallick et al. [10]) and MALDI data (Morris et al. [11]). 
Functional classification of  curve data or functional data has been greatly developed 
in the last decade. 

In this study, classification of  curve data based functional principal component 
analysis (FPCA) is discussed. A typical approach of  applying FPCA to functional 
data classification is classifying the FPC scores directly through logistic regression 
(Müller [12]; Leng and Müller [9]). However, the dif ference of  within-curve 
covariance or correlation structures between distinct groups may not be shown by 
the distribution of  FPC scores. For this reason, we use the FPCA model to propose 
the best predicted curve classif ication (BPCC) criterion for classifying the curve 
data, which can simultaneously take into account the means and the modes of  
variation dif ferentials between classes. Chiou and Li [2] proposed the k-centers 
functional clustering (kCFC), where the cluster centers hinge on the cluster 
functional principal component subspaces and individual cluster membership is 
determined by the minimum L2 distance between the observed curve and the fitted 
function obtained by cluster subspace projection. The classification criterion of  the 
unsupervised clustering method, kCFC, can be easily extended to the proposed BPCC 
method. We assume that each observed curve can be viewed as a realization of  a 
random function and is sampled from a mixture of  K  stochastic processes, where 
each subprocess represents a class and the class center is defined by the structure 
of  a FPC subspace that corresponds to the Karhunen-Loève expansion. An observed 
curve is then classif ied into the best predicted class by minimizing the distance 
between the observed and predicted curves via subspace projection among all classes 
based on the FPCA model. It is shown that the proposed BPCC algorithm performs 
reasonably well for data under various cluster structures in our numerical studies. 
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The rest of  this paper is organized as follows. Section 2 introduces the functional 
random-effects model of  random curves and the relevant FPCA-based functional 
classification methods, including the BPCC and functional logistic regression (FLR). 
Simulation studies for investigating the numerical performance of  the proposed 
method are presented in Section 3. Section 4 illustrates a practical application 
to identifying lung cancer cases by a MALDI mass spectrometry (MS) data set. 
Concluding remarks are summarized in Section 5. 

2. Classification based on FPC subspace projection 

2.1   Functional random-effects model of  random curves 

Let L2(dν) represents a Hilbert space of  square integrable functions with respect 
to the measure dν(t) = ν(t)dt on a real interval  = [a, b], for a < b, where dt is a 
Lebesgue measure and ν(t) is a nonnegative weight function such that ν(t) > 0 for 
t ∈ T  and ν(t) = 0 otherwise. The inner product of  two functions f  and  in L2(dν) 
is defined as 〈f , 〉 = ∫ f (t) (t)dν(t) and the L2 norm is defined as || ⋅ || = 〈⋅,⋅〉1/2. Here, 
we use a constant weight function ν(t) = (b - a)-1I [t∈T ] in this study. Suppose that n 
independent random curves X1, X 2,..., X n are sampled from a stochastic process X  
in L2(dν). Assume that the process X  has a smooth mean function μ(t) = E(X(t)) and 
a smooth covariance function Γ(s, t) = Cov(X(s), X(t)), where Γ is twice continuously 
differentiable. Based on the Karhunen-Loève expansion, the random function X i(t) 
can expressed as the following functional random-effects model, 

	 � (1)

where the random-effects ξ i j are uncorrelated with zero mean and finite variance 
λ j. The set of  functions {φ j} forms an orthornormal basis in L2 associated with 
the covariance function Γ. In practice, the random function X i can possibly be 
contaminated with measurement errors. Let the trajectory Y i(t) be a realization of  
the random function Xi(t) at time t. We consider the additive measurement error model

where i(t) are random measurement errors that are iid with E(i(t)) = 0 and 
Cov(i(s), i(t)) = σ2δ st, where δ st is 1 for s = t and 0 otherwise. The random errors i(t) 
are assumed to be independent of  ξ i j. In practical applications, a truncated expansion 
of  model (2) with finite number of  components such as 
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	 � (2)

is often required for approximating the random process X i. A common practice 
is to choose the number of  components M  according to the proportion of  total 
variations explained by the first few leading principal components {φ j, j = 1,..., M }. 
We note that when μ ∈ Span {φ1, φ2,..., φM }, the mean function μ(t) can be expressed 
as ∑M

j=1 〈μ, φ j〉 φ j(t) and thus the multiplicative random-effects ξ i j in model (2) are 
not identif iable. Therefore, we assume that the mean function μ  does not belong 
to the space spanned by the principal component functions {φ j, j = 1, 2,..., M } for 
identifiability concerns. 

Let yi j = yi(ti j) be the jth observation of  the ith random curve Y i collected at 
time point ti j. In estimation of  the model components in (1), the mean function μ(t) is 
estimated by applying local linear regression to the scatterplot data {(tij, yij)i=1,..., n,j=1,..., mi}, 
and the covariance function Γ is obtained by applying the scatterplot smoothing into 
the raw covariances {ri, j, 1 ≤ i ≤ n, 1 ≤ j ≠ 

l
 ≤ mi} to fit a local linear plane, where ri, j 

= (yij - μ̂(ti j))(yi - μ̂(ti)). The estimated eigenvalues {λ̂ j} and eigenfucntions {φ̂j} are 
obtained by solving an eigensystem 

The random-effects ξ i j can be obtained by the shrinkage estimates of  Yao et al. [18] 

to adjust for measurement errors such that , where ξ~i j is a discrete 
approximation to 〈yi - μ̂, φ̂j), and τ̂ is the estimate of  shrinkage parameter τ  , which 
can be obtained by leave-one-curve-out cross-validation. 

2.2   The best predicted curve classification criterion 

In this section, we extend the basic principles of  k-centers FC proposed by Chiou 
and Li [2] to functional classification. Suppose the data curves considered comprise 
K  clusters, then X  can be viewed as a mixture of  K  subprocesses in L2. Let the 
random variable C  is the cluster membership of  X , C  ∈ {1, 2,..., K }. We assume 
that the mean and covariance funcitons associated with cluster c are conditionally 
defined μ (c)(t) = E(X(t) | C = c) and Γ(c)(s, t) = Cov(X(s), X(t) | C = c). Let {φj

(c), j = 1, 2,...} 
be the set of  orthornormal bases associated with the covariance function Γ(c)(s, t) as 
defined in link with the functional random-effects model (1). Similar to the model (1), 
the realization Y i

(c) of  the random function X i corresponding to cluster c is given by 
the conditional model 
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	 � (3)

where ξ (c)
i j = 〈X i - μ (c), φj

(c)〉 are uncorrelated random-ef fects with mean zero and 
variance λ j

(c). The uncorrelated random errors i
(c)(t) have zero mean and constant 

variance σ 2
(c) and are assumed to be independent of  ξ (c)

i j. When a large proportion 
of  total variances is explained by the first few leading principal components as is 
often the case in practice, it is appropriate to consider the projection of  X i

(c) onto the 
FPC subspace of  cluster c, a truncated nonparametric random-effect model X̃ i

(c), to 
approximate X i

(c) such that 

	 � (4)

where the number of  components M c has to be chosen to expand the random process 
effectively. 

Based on the FPC subspace projection framework, the best cluster membership 
c* of  an observed curve Y * is determined by a metric that properly measures the 
distance between Y * and its projection onto the FPC subspaces of  different classes. 
When the L2 distance is chosen as the dissimilarity measure, we may define the 
distance measure by dL(f , ) = || f  - || 2 for any functions f  and  in L2. The best 
predicted cluster membership c* of  Y * is determined by the classification criterion 

	 � (5)

where X̂ (c) is the projected function of  Y * onto FPC subspace of  cluster c with X̂ (c)(t) 
= μ̂ (c)(t) + ∑M c

j=1 ξ̂ j
(c)* φ̂j

(c)(t), ξ̂ j
(c)* is the shrinkage estimator of  〈Y * - μ (c), φ j

(c)〉, j = 1,..., M c, 
based on model (4). 

Let {yi
(c), i = 1,..., nc, c = 1,..., K } be a training data set of  K  known classes, and 

y* be a newly observed curve to be classified. The BPCC algorithm comprises two 
basic steps: (a) to estimate the mean functions μ (c) and eigenfunctions {φ j

(c)} of  each 
class of  the training data, and (b) to classify y* based on the criterion (5). We note 
that the BPCC method discovers homogeneous subgroups of  curve data according to 
the structure of  the means as well as the modes of  variation differentials through 
the projections of  the FPC subspaces. Moreover, the L2 distance measure dL2 can be 
replaced by other distance measures according to different classification purposes. 
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For instance, the functional correlation dFC (f , ) =  (Chiou and Li [3]), 
where f̃  = f  - 〈 f , 1〉 is a centered version of  f  and ˜ is defined analogously, for f ,  ∈ 
L2; the nonparametric rank correlation dRC ( f , ) =  of  Heckman and Zamar 
[6], where Rf  (t) = rf(t) - 〈rf, 1〉, rf(t) = Pr{ f(S) < f(t)} + Pr{ f(S) = f(t)} is the random 
function of  f , and S ~ Uniform(a, b). Both the distances measures dFC and dRC can be 
used for classification based on the shape similarity between curves. For this case, 
the classification criterion (5) is replaced by 

or 

2.3   Functional logistic regression based on FPCA 

Functional logistic regression is a special case of  generalized functional linear 
model and is widely used to the classif ication problem of  two groups. Functional 
logistic regression based on FPCA has been also discussed in other previous 
literatures (Escabias et al. [4]; Müller [12]). Leng and Müller [9] applied the 
functional discrimination through logistic regression based on functional principal 
components to analysis of  yeast cell-cycle temporal data. We introduce the basic idea 
of  functional logistic regression based on FPCA model in this section. 

Let the response Z denote membership in one of two groups, and define Z = 1 if  the 
observation comes from the group G1 and Z = 0 if  it comes from the other group G0. 
Given the data ({Xi(t)}, Zi), i = 1,..., n, where Xi(t) is the predictor function of ith subject. 
The functional logistic regression is given by Zi = πi + ei, where πi = P(Zi = 1 | {Xi(t), t ∈ }), 
and ei are i.i.d random errors with zero mean and variance π i(1 - π i). The probability 
of  response Z  = 1 for the predictor function X i(t) is given by 

	 � (6)

where  is the logit function, i.e., (x) = log{x/(1 - x)}. The parameters α* and β(t) are 
a constant and a smooth function, respectively. Suppose the coefficient function β(⋅) 
can be expanded by β(t) = ∑∞

j=1 β jφ j(t) by the orthnormal eigenfunctions defined in 
the model (1). It is easy to shown that the logistic model (6) can be expressed as 
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	 � (7)

based on the FPCA model (1) of  the predictor function X i(t). Intuitively, the 
classification rule of  the logistic regression model (7) is determined by the marginal 
FPC scores ξ i j of  the two groups. We note that the model (7) is usually approximated 
by the truncated model based on the M  leading FPC scores in practice, and the FPC 
scores ξ i j can be estimated by the method described in Section 2.1. The coefficients 
(α, β1,..., βM  ) are obtained by the usual estimating equation approach. We estimate 
the π i by π̂ i = -1 (α̂ + ∑M

j=1 β̂ jξ̂ i j) and classify the ith subject into the group G1 by 
π̂ ≤ p1, otherwise into group G0. In this study, we use p1 = 0.5 in simulations and data 
example. 

3. Simulations 

We examine the performance of  the proposed BPCC method and compare it with 
the functional logistic regression based on FPCA model (denoted by FLR) presented 
in Section 2.3 and the multivariate logistic regression (denoted by LR) approaches 
for two classes classification. The synthetic curves of  two groups are generated based 
on the model 

	 � (8)

where l = 1,..., m, i = 1,..., nk, and k = 1, 2. The recording times are generated from an 
equally spaced design on [0, 1] such that til = (l - 1)/(m - 1). The random-effects ξ ij

(k) are 
independently generated from N(0, λ j), and the random errors il

(k) are independently 
generated from N(0, σ2), for all k. We consider the following three settings for mean 
functions of  two classes in the simulations: 
Setting 1:	 Two mean functions differ in vertical shift. The mean functions of  two 

clusters are set as μ (1)(t) = -2(t - 0.5)2 + t and μ (2)(t) = μ (1)(t) - 2. 
Setting 2:	Two mean functions differ only in two local features. The mean functions 

of  two clusters are set as
μ (1)(t) = 1/(1 + e5-t)

	 and
μ (2)(t) = μ (1)(t) + 0.5I(t = t2) - 0.75I(t = tm),

	 where I(⋅) is the indicator function. 
Setting 3:	Two mean functions differ in shape. The mean functions of  two clusters 

are set as
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μ (1)(t) = 4(t - 0.5)2 + 1
	 and

μ (2)(t) = 2.5 exp{-25(t-0.25)2} + 2 exp {-50(t-0.75)2}. 
Define E1 = span{ρ11, ρ12} and E2 = span{ρ21, ρ22} as two distinct eigensapces spanned 
by different sets of  orthonormal eigenfunctions, where 
       ρ11(t) =  sin(πt), ρ12(t) =  cos(πt), ρ21(t) =  sin(2πt), 
and ρ22(t) =  cos(2πt) 
are orthonormal basis functions. We consider the following six cases in the 
simulations: 
Case A1:	 The mean f unctions of  two clusters are set as Setting 1 and the 

eigenspaces of  two clusters are set as the same space E1. The eigenvalues 
(λ1

(k), λ2
(k)) are set as (.2, .1), for k = 1, 2, and the variance of  measurement 

errors are set as σ2 = .25. 
Case A2:	The mean functions of  two clusters are set as Setting 2, and the variance 

of  measurement errors are set as σ 2 = .00064. The eigenspaces of  two 
clusters and eigenvalues (λ1

(k), λ2
(k)) are the same as Case A1. 

Case A3:	 The mean functions of  two clusters are set as Setting 3, the eigenvalues 
(λ1

(k), λ2
(k)) are set as (.4, .3), for k = 1, 2, and the variance of  measurement 

errors are set as σ2 = .25. The eigenspaces of  two clusters are the same as 
in Case A1. 

Case B1:	 The mean f unctions of  two clusters are set as Setting 1, and the 
eigenspaces of  the first and second clusters are set E1 and E2, respectively. 
The eigenvalues (λ1

(k), λ2
(k)) are set as (2, 1), for k = 1, 2, and the variance of  

measurement errors are set as σ2 = 1. 
Case B2:	The mean functions of  two clusters are set as Setting 2, and the variance 

of  mea-surement errors are set as σ2 = .81. The eigenspaces of  two clusters 
and eigenvalues (λ1

(k), λ2
(k)) are the same as in Case B1. 

Case B3:	 The mean functions of  two clusters are set as Setting 3, the eigenvalues 
(λ1

(k), λ 2
(k)) are set as (4, 3), for k = 1, 2, and the variance of  measurement 

errors are set as σ2 = .36. The eigenspaces of  two clusters are the same as 
in Case B1. 

The first three Cases A1-A3 are designed for two clusters with different mean 
functions but the same eigenspace, while the other three Cases B1-B3 are set for 
clusters with different mean functions and eigenspaces. We generate 2n synthetic 
curves for a sample, where n = n1 + n2, and the first and second clusters have 2n1 and 
2n2 curves, respectively. We randomly select nk curves of  cluster k as the training 
data for estimating the model components and building the classification rule, for 
k = 1, 2. The remaining n curves are taken as test data for calculating the accuracy 
of  classification. Various sample sizes n and number of  time point m are considered 
in simulations. We also consider the balanced design (n1 = n2) and the unbalanced 
design (n1 ≠ n2) for the sample size of  each cluster. 
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The methods BPCC, FLR and LR are compared by the accuracy of  correct 
classification based on 1,000 synthetics samples. For the FLR and BPCC methods, 
the local polynomial smoothing techniques are implemented for estimation and the 
bandwidths are automatically chosen by the cross-validation method. The numbers 
of  principal components are determined by the 90% criterion for the proportion of  
total variance explained. We compare the three classification methods across various 
combinations of  sample sizes (n = 20, 50, 100, 500) and numbers of  observation points 
(m = 11, 21, 41) under the balanced sample size design. Figure 1 shows the average 
accuracy of  the three compared methods under different number of  curves for m = 
11. Obviously, the accuracy of  classification increases in sample size for all methods. 
The BPCC and LR methods performs better than FLR, and the BPCC outperforms 
the others for Cases B1-B3. Similar results can be obtained for the larger number of  
observation points. Figure 2 displays the average accuracy under different number 
of  time points m. Except for Case A2, the accuracy obtained from BPCC increases in 
the observation numbers while the effect of  m is not consistent among all the cases 
for LR and FLR. The accuracy decreases in m for Case A2 could be because the local 
features of  the second cluster are not detected for larger number of  time points. For 
most of  the cases, the BPCC method still performs better than LR and FLR under 
all considered number of  time points, especially for Cases B1-B3. Overall, the BPCC 
method has the outstanding advantage over LR and FLR when distinct clusters 
differs in mean functions and eigenspaces. 
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Figure 1. Average accuracy of  test data resulted from the BPCC, FLR and LR 
methods under m = 11 and different sample sizes n based on 1,000 synthetic samples.
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Furthermore, we compare the performances of  all the methods under an 
unbalanced design of  sample sizes. The number of  curves for the f irst cluster is 
set as a small sample size n1 = 10, and the size of  second cluster is set as a larger 
number n2 = 40. Table 1 presents the averages and standard deviations of  accuracy 
for all cases. In addition to the accuracy of  all curves, the accuracy of  each class is 
also respectively provided in Table 1. In general, the BPCC outperforms the others 
for Cases B1-B3 while there is no best approach for Cases A1-A3. In addition, the 
accuracy of  cluster with smaller sample size (n1 = 10) obtained from LR and FLR 
is lower than the cluster with larger sample size (n2 = 40), whereas the BPCC 
method performs well for both clusters. Therefore, compared with the LR and FLR 
approaches, the BPCC criterion has more stable performance of  accuracy, specificity, 
and sensitively for clusters with very different sample sizes. 

4. An application to the classif ication of  mass spectrometry 
proteomic data 

We introduce an application of  the FPCA-based functional classification methods 
of  a MALDI MS data set of  Yildiz et al. [19]. The data consist of  288 serum proteomic 
profiles collected from a case-control study which aims to distinguish lung cancer 
cases from matched controls through MALDI MS analysis of  the the most abundant 
peptides in the serum. The cases and controls were matched to avoid confounding 
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Figure 2. Average accuracy of test data resulted from the BPCC, FLR and LR methods 
under n = 100 and different number of time points m based on 1,000 synthetic samples.
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variables such as age, sex, and total pack-year history. Yildiz et al. [19] split the 
the matched cases and controls into training (n = 182) and test (n = 106) sets. Since 
the MS data are high-dimensional even after preprocessing, they selected seven 
MS features based on the preprocessed spectra and applied the selected features to 
multivariate class-prediction models. Based on the seven discriminant features, the 
overall classification accuracy, sensitivity, and specificity of  their matched blinded 
test set obtained from the logistic regression (denoted by LR [7 features]), SVM, and 
the Weighted Flexible Compound Covariate Method (WFCCM) of  Shyr and Kim 
[17] are shown in Table 2. Among these three methods, the SVM approach performs 
slightly better than the others. 

In this study, we are interested in applying the functional classification methods 
to the densely collected serum proteomic prof iles, especially the FPCA-based 
approaches. We consider the 288 MALDI MS serum spectra after preprocessing, in 
which each spectrum represents the ion current intensities measured at 184 m/z 

Table 1. Averages and standard deviations (SD) of  accuracy for the test data 
obtained by LR, FRL and BPCC methods based on 1,000 simulation replicates for 
Cases A1–B3 under unbalanced design of  cluster sizes. The sample sizes of  two 
groups are set as (n1, n2) = (10, 40).

Average Accuracy (SD)
Case Method All Class 1 Class 2
A1 LR 0.9912 (0.0211) 0.9894 (0.0373) 0.9917 (0.0218)

FLR 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000)
BPCC 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000)  

A2 LR 0.9714 (0.0383) 0.9617 (0.0726) 0.9739 (0.0387)  
FLR 0.7912 (0.0242) 0.0313 (0.0721) 0.9812 (0.0348)
BPCC 0.6659 (0.1321) 0.5438 (0.2415) 0.6964 (0.1781)  

A3 LR 0.9635 (0.0454) 0.9512 (0.0818) 0.9666 (0.0459)
FLR 0.9992 (0.0077) 0.9977 (0.0287) 0.9996 (0.0041)  
BPCC 0.9998 (0.0024) 0.9991 (0.0122) 1.0000 (0.0000)  

B1 LR 0.7236 (0.0928) 0.5906 (0.1824) 0.7569 (0.1064)  
FLR 0.9226 (0.0495) 0.7060 (0.1634) 0.9768 (0.0395)
BPCC 0.9825 (0.0236) 0.9572 (0.0839) 0.9888 (0.0231)

B2 LR 0.5989 (0.0820) 0.4030 (0.1673) 0.6478 (0.1009)  
FLR 0.8089 (0.0245) 0.0672 (0.1144) 0.9943 (0.0180)
BPCC 0.9739 (0.0321) 0.9424 (0.1120) 0.9818 (0.0322)  

B3 LR 0.9161 (0.0655) 0.8632 (0.1343) 0.9293 (0.0663)
FLR 0.8054 (0.0294) 0.0596 (0.1157) 0.9919 (0.0249)
BPCC 0.9976 (0.0140) 0.9880 (0.0700) 1.0000 (0.0000)
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locations for a subject. For classification purposes, we treat the m/z values as equally 
spaced with the aim to capture the major patterns of  proteomic profiles. This should 
not affect the classification results since all the spectra are treated the same on the 
realigned m/z values. Figure 3 shows the raw trajectories of  the pre-processed data 

Table 2. Accuracy, sensitivity, and specificity of  the blinded test set of  MALDI MS 
data selected by Yildiz et al. [19]. 

Method (M1, M 2) Accuracy Sensitivity Specificity
LR (7 features) 0.7547 0.6200 0.8750
SV M  (7 features) 0.7925 0.6400 0.9286  
W FCCM  (7 features) 0.7260 0.5800 0.8570
LR 0.6226 0.5560 0.6786
FLR (43,43) 0.9057 0.8800 0.9286
BPCC (26,20) 0.9057 0.9600 0.8571
BPCC (M1 = M 2) (71,71) 0.9340 0.9600 0.9107

Figure 3. Raw trajectories of  MALDI MS data (upper panels) and the marginal 
mean function (lower right panel) and conditional mean functions (lower left panel) 
of  Case and Control groups. The notation ’×’ denote the seven discriminant features 
selected by Yildiz et al. [19].
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of  142 cases and 146 controls, the overall mean function, and the conditional mean 
function of  each group. Obviously, the difference between case and control groups is 
shown in the mean intensities at some m/z values, especially at the seven features 
selected by Yildiz et al. [19]. We analyze the MALDI MS spectra by the functional 
random-effects models in Section 2.1. The local linear smoothing methods are applied 
in estimation of  the model components but the measurement errors are not taken 
into account. The bandwidths of  one- and two-dimensional smoothing methods are 
chosen by the cross-validation method. Based on the marginal FPCA model (1), the 
four leading eigenfunctions, the proportions of  total variance explained, and the 
scatter plots of  pairwise FPC scores are displayed in Figure 4. It shows that some of  
the cases and controls can be easily separated through the distributions of  marginal 
FPC scores. This indicates FPCA could be a proper dimension reduction technique 
for this data set. We further estimate the eigenfucnctions of  each group based on 

Figure 4. The first four marginal eigenfunctions (diagonal panels) and the scatter 
plots of  pairwise FPC scores based on model (1). The notations ’°’ and ’•’ represent 
the case and control groups, respectively. The percentages in parentheses indicate 
the proportions of  total variance explained by the principal components.
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the conditional model (3). The first six eigenfunctions and corresponding proportions 
of  total variance explained are presented in Figure 5, which shows very distinct 
covariance structures between case and control groups. Therefore, the two clusters 
of  this data set are different in the structure of  the means as well as the modes of  
variation. 

The three compared classification methods in simulation study are implemented 
to the same training and test sets of  Yildiz et al. [19]. For the FLR and BPCC 
methods, the numbers of  principal components are automatically chosen by the 
cross-validation method based on maximizing the classification accuracy of  training 
data. For the BPCC approach, we also consider setting equal numbers of  principal 
components (M 1 = M 2) for two clusters. The results of  accuracy, sensitivity, and 
specificity of  the blinded test set obtained by different methods are shown in Table 
2. Compared with the classification results based on the seven features, the FPCA-
based functional classification approaches, FLR and BPCC, improve the accuracy, 
sensitivity, and specificity. The BPCC method under M1 = M 2 especially outperforms 
the others. Moreover, we investigate the performance of  all the methods by 4-fold 
cross-validation. Table 3 shows the averages and standard deviations of  the three 
classification measures for 100 4-fold cross-validation replicates. Overall, the FPCA-
based functional classification methods perform better than the multivariate data 
approache in terms of  average and standard deviation. The FLR obtains higher 
sensitivity than BPCC when the sample size of  control group is restricted to four 
times the size of  case group, while the BPCC method performs better than FLR in 

Figure 5. The first five conditional eigenfunctions of  two groups based on model (3). 
The percentages in parentheses indicate the proportions of  total variance explained 
by the principal components.
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all three measures under the ratio of  sample sizes without restriction. In summary, 
the results show that the FPCA-based functional classif ication provides another 
useful tool for diagnosis of  lung caner via MALDI MS data. 

5. Concluding remarks 

The proposed BPCC method is shown to perform reasonably well when different 
groups of  curve data have distinct means and eigenspaces through numerical 
studies. When shape patterns of  curves are of  primary interest in classif ication, 
we may consider the correlation-based distance measures such as dFC and dRC 
defined in Section 2.2. We have demonstrated how to use the FPCA-based functional 
classification to analyze MALDI MS data. The results show that FPCA is useful to 
explore the structures of  cases and controls and provide additional insight of  the 
spectra data. In addition, the functional data approach avoids reliance on feature 
detection. Classif ication of  MS data via functional data approach improves the 
accuracy, sensitivity, and specificity for considering the whole profile of  a spectrum. 
Furthermore, the BPCC method takes the within-spectrum correlation into 
account, which facilitates classifying the proteomic MS data. In a future work, it is 
interesting to extend the proposed method by adding informative clinical covariates. 
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Table 3. Averages and standard deviations of  accuracy, sensitivity, and specificity 
based on 100 four-fold cross-validation replicates of  MALDI MS data. 

n1 : n2 Method Accuracy(SD) Sensitivity(SD) Specificity(SD)
No Restriction LR (7 features) 0.7640 (0.0430) 0.6693 (0.0754) 0.8587 (0.0601)

LR 0.7828 (0.0543) 0.7597 (0.0772) 0.8006 (0.0796)
FLR 0.9182 (0.0301) 0.9084 (0.0486) 0.9329 (0.0495)
BPCC 0.9296 (0.0292) 0.9362 (0.0464) 0.9238 (0.0460)
BPCC (M1 = M 2) 0.9295 (0.0283) 0.9149 (0.0502) 0.9452 (0.0382)

Restricted to 1:4 LR (7 features) 0.8628 (0.0398) 0.4628 (0.1625) 0.9628 (0.0334)
LR 0.8962 (0.0512) 0.7519 (0.1573) 0.9322 (0.0497)
FLR 0.9369 (0.0389) 0.8253 (0.1169) 0.9649 (0.0345)
BPCC 0.9328 (0.0353) 0.7883 (0.1425) 0.9690 (0.0325)
BPCC (M1 = M 2) 0.9126 (0.0374) 0.6553 (0.1656) 0.9769 (0.0275)
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